References

Agrios, G. N. 2005a. INTRODUCTION. In Elsevier, pp. 3–75. https://doi.org/10.1016/b978-0-08-047378-9.50007-5.
Agrios, G. N. 2005b. Plant disease epidemiology. In Elsevier, pp. 265–291. https://doi.org/10.1016/b978-0-08-047378-9.50014-2.
Alves, K. S., and Del Ponte, E. M. 2021. Analysis and simulation of plant disease progress curves in R: introducing the epifitter package. Phytopathology Research 3. https://doi.org/10.1186/s42483-021-00098-7.
Alves, K. S., Guimarães, M., Ascari, J. P., Queiroz, M. F., Alfenas, R. F., Mizubuti, E. S. G., and Del Ponte, E. M. 2021. RGB-based phenotyping of foliar disease severity under controlled conditions. Tropical Plant Pathology 47:105–117. https://doi.org/10.1007/s40858-021-00448-y.
Alves, K. S., Shah, D. A., Dillard, H. R., Del Ponte, E. M., and Pethybridge, S. J. 2022. From reanalysis data to inference: A framework for linking environment to plant disease epidemics at the regional scale.
Analytis, S. 1977. Über die Relation zwischen biologischer Entwicklung und Temperatur bei phytopathogenen Pilzen. Journal of Phytopathology 90:64–76. https://doi.org/10.1111/j.1439-0434.1977.tb02886.x.
Baddeley, A., Diggle, P. J., Hardegen, A., Lawrence, T., Milne, R. K., and Nair, G. 2014. On tests of spatial pattern based on simulation envelopes. Ecological Monographs 84:477–489. https://doi.org/10.1890/13-2042.1.
Baddeley, A., Turner, R., Moller, J., and Hazelton, M. 2005. Residual analysis for spatial point processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67:617–666. https://doi.org/10.1111/j.1467-9868.2005.00519.x.
Bailey, J. E. 1999. Integrated Method of Organizing, Computing, and Deploying Weather-Based Disease Advisories for Selected Peanut Disease. Peanut Science 26:74–80. https://doi.org/10.3146/i0095-3679-26-2-3.
Barnhart, H. X., Haber, M., and Song, J. 2002. Overall Concordance Correlation Coefficient for Evaluating Agreement Among Multiple Observers. Biometrics 58:1020–1027. https://doi.org/10.1111/j.0006-341x.2002.01020.x.
Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software 67. https://doi.org/10.18637/jss.v067.i01.
Bernard, F., Sache, I., Suffert, F., and Chelle, M. 2013. The development of a foliar fungal pathogen does react to leaf temperature! New Phytologist 198:232–240. https://doi.org/10.1111/nph.12134.
Bock, C. H., Chiang, K.-S., and Del Ponte, E. M. 2021a. Plant disease severity estimated visually: a century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Tropical Plant Pathology 47:25–42. https://doi.org/10.1007/s40858-021-00439-z.
Bock, C. H., Pethybridge, S. J., Barbedo, J. G. A., Esker, P. D., Mahlein, A.-K., and Del Ponte, E. M. 2021b. A phytopathometry glossary for the twenty-first century: towards consistency and precision in intra- and inter-disciplinary dialogues. Tropical Plant Pathology 47:14–24. https://doi.org/10.1007/s40858-021-00454-0.
Bourke, P. M. A. 1970. Use of Weather Information in the Prediction of Plant Disease Epiphytotics. Annual Review of Phytopathology 8:345–370. https://doi.org/10.1146/annurev.py.08.090170.002021.
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9:378–400. https://doi.org/10.32614/RJ-2017-066.
Brown, V. A. 2021. An Introduction to Linear Mixed-Effects Modeling in R. Advances in Methods and Practices in Psychological Science 4:251524592096035. https://doi.org/10.1177/2515245920960351.
Bulger, M. A. 1987. Influence of temperature and wetness duration on infection of strawberry flowers byBotrytis cinereaand disease incidence of fruit originating from infected flowers. Phytopathology 77:1225. https://doi.org/10.1094/phyto-77-1225.
Café-Filho, A. C., Santos, G. R., and Laranjeira, F. F. 2010. Temporal and spatial dynamics of watermelon gummy stem blight epidemics. European Journal of Plant Pathology 128:473–482. https://doi.org/10.1007/s10658-010-9674-1.
Caffi, T., Rossi, V., Cossu, A., and Fronteddu, F. 2007. Empirical vs. mechanistic models for primary infections of Plasmopara viticola*. EPPO Bulletin 37:261–271. https://doi.org/10.1111/j.1365-2338.2007.01120.x.
Caffi, T., Rossi, V., Legler, S. E., and Bugiani, R. 2010. A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathology 60:522–531. https://doi.org/10.1111/j.1365-3059.2010.02395.x.
Calvero Jr, S. B., Coakley, S. M., and Teng, P. S. 1996. Development of empirical forecasting models for rice blast based on weather factors. Plant Pathology 45:667–678. https://doi.org/10.1046/j.1365-3059.1996.d01-168.x.
Campbell, C. L., and Madden. L., V. 1990. Introduction to plant disease epidemiology. Wiley.
Cao, X., Yao, D., Xu, X., Zhou, Y., Ding, K., Duan, X., Fan, J., and Luo, Y. 2015. Development of Weather- and Airborne Inoculum-Based Models to Describe Disease Severity of Wheat Powdery Mildew. Plant Disease 99:395–400. https://doi.org/10.1094/pdis-02-14-0201-re.
Chester, K. S. 1950. Plant disease losses : Their appraisal and interpretation /. https://doi.org/10.5962/bhl.title.86198.
Chiang, K.-S., and Bock, C. H. 2021. Understanding the ramifications of quantitative ordinal scales on accuracy of estimates of disease severity and data analysis in plant pathology. Tropical Plant Pathology 47:58–73. https://doi.org/10.1007/s40858-021-00446-0.
Chiang, K.-S., Chang, Y. M., Liu, H. I., Lee, J. Y., El Jarroudi, M., and Bock, C. 2023. Survival Analysis as a Basis to Test Hypotheses When Using Quantitative Ordinal Scale Disease Severity Data. Phytopathology®. https://doi.org/10.1094/phyto-02-23-0055-r.
Chiang, K.-S., Liu, S.-C., Bock, C. H., and Gottwald, T. R. 2014. What Interval Characteristics Make a Good Categorical Disease Assessment Scale? Phytopathology® 104:575–585. https://doi.org/10.1094/phyto-10-13-0279-r.
Coakley, S. M. 1985. Model for predicting severity of septoria tritici blotch on winter wheat. Phytopathology 75:1245. https://doi.org/10.1094/phyto-75-1245.
Coakley, S. M. 1988. Predicting stripe rust severity on winter wheat using an improved method for analyzing meteorological and rust data. Phytopathology 78:543. https://doi.org/10.1094/phyto-78-543.
Coakley, S. M., McDaniel, L. R., and Line, R. F. 1988. Quantifying how climatic factors affect variation in plant disease severity: A general method using a new way to analyze meteorological data. Climatic Change 12:57–75. https://doi.org/10.1007/bf00140264.
Cruz, C. D., and Valent, B. 2017. Wheat blast disease: danger on the move. Tropical Plant Pathology 42:210–222. https://doi.org/10.1007/s40858-017-0159-z.
Dalla Lana, F., Madden, L. V., and Paul, P. A. 2021. Natural Occurrence of Maize Gibberella Ear Rot and Contamination of Grain with Mycotoxins in Association with Weather Variables. Plant Disease 105:114–126. https://doi.org/10.1094/pdis-05-20-0952-re.
Dalla Lana, F., Ziegelmann, P. K., Maia, A. de H. N., Godoy, C. V., and Del Ponte, E. M. 2015. Meta-Analysis of the Relationship Between Crop Yield and Soybean Rust Severity. Phytopathology® 105:307–315. https://doi.org/10.1094/phyto-06-14-0157-r.
Dalla Pria, M., Christiano, R. C. S., Furtado, E. L., Amorim, L., and Bergamin Filho, A. 2006. Effect of temperature and leaf wetness duration on infection of sweet oranges by Asiatic citrus canker. Plant Pathology 55:657–663. https://doi.org/10.1111/j.1365-3059.2006.01393.x.
De Cól, M., Coelho, M., and Del Ponte, E. M. 2024. Weather-Based Logistic Regression Models for Predicting Wheat Head Blast Epidemics. Plant Disease 108:2206–2213. https://doi.org/10.1094/pdis-11-23-2513-re.
De Rossi, R. L., Guerra, F. A., Plazas, M. C., Vuletic, E. E., Brücher, E., Guerra, G. D., and Reis, E. M. 2022. Crop damage, economic losses, and the economic damage threshold for northern corn leaf blight. Crop Protection 154:105901. https://doi.org/10.1016/j.cropro.2021.105901.
De Wolf, E. D., and Isard, S. A. 2007. Disease Cycle Approach to Plant Disease Prediction. Annual Review of Phytopathology 45:203–220. https://doi.org/10.1146/annurev.phyto.44.070505.143329.
De Wolf, E. D., Madden, L. V., and Lipps, P. E. 2003. Risk Assessment Models for Wheat Fusarium Head Blight Epidemics Based on Within-Season Weather Data. Phytopathology® 93:428–435. https://doi.org/10.1094/phyto.2003.93.4.428.
Del Ponte, E. M., Cazón, L. I., Alves, K. S., Pethybridge, S. J., and Bock, C. H. 2022. How much do standard area diagrams improve accuracy of visual estimates of the percentage area diseased? A systematic review and meta-analysis. Tropical Plant Pathology 47:43–57. https://doi.org/10.1007/s40858-021-00479-5.
Del Ponte, E. M., Fernandes, J. M. C., and Pavan, W. 2005. A risk infection simulation model for fusarium head blight of wheat. Fitopatologia Brasileira 30:634–642. https://doi.org/10.1590/s0100-41582005000600011.
Del Ponte, E. M., Godoy, C. V., Li, X., and Yang, X. B. 2006. Predicting Severity of Asian Soybean Rust Epidemics with Empirical Rainfall Models. Phytopathology® 96:797–803. https://doi.org/10.1094/phyto-96-0797.
Del Ponte, E. M., Mahlein, A.-K., and Bock, C. H. 2024. Plant disease quantification. In Elsevier, pp. 211–225. https://doi.org/10.1016/b978-0-12-822429-8.00006-6.
Del Ponte, E. M., Nelson, S. C., and Pethybridge, S. J. 2019. Evaluation of App-Embedded Disease Scales for Aiding Visual Severity Estimation of Cercospora Leaf Spot of Table Beet. Plant Disease 103:1347–1356. https://doi.org/10.1094/pdis-10-18-1718-re.
Del Ponte, E. M., Pethybridge, S. J., Bock, C. H., Michereff, S. J., Machado, F. J., and Spolti, P. 2017. Standard Area Diagrams for Aiding Severity Estimation: Scientometrics, Pathosystems, and Methodological Trends in the Last 25 Years. Phytopathology® 107:1161–1174. https://doi.org/10.1094/phyto-02-17-0069-fi.
Duffeck, M. R., Santos Alves, K. dos, Machado, F. J., Esker, P. D., and Del Ponte, E. M. 2020. Modeling Yield Losses and Fungicide Profitability for Managing Fusarium Head Blight in Brazilian Spring Wheat. Phytopathology® 110:370–378. https://doi.org/10.1094/phyto-04-19-0122-r.
Duthie, J. A. 1997. Models of the Response of Foliar Parasites to the Combined Effects of Temperature and Duration of Wetness. Phytopathology® 87:1088–1095. https://doi.org/10.1094/phyto.1997.87.11.1088.
El Jarroudi, M., Kouadio, L., Bock, C. H., El Jarroudi, M., Junk, J., Pasquali, M., Maraite, H., and Delfosse, P. 2017. A Threshold-Based Weather Model for Predicting Stripe Rust Infection in Winter Wheat. Plant Disease 101:693–703. https://doi.org/10.1094/pdis-12-16-1766-re.
Esser, D. S., Leveau, J. H. J., Meyer, K. M., and Wiegand, K. 2014. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiology Ecology 91. https://doi.org/10.1093/femsec/fiu034.
Evans, K. J. 1992. A model based on temperature and leaf wetness duration for establishment of alternaria leaf blight of muskmelon. Phytopathology 82:890. https://doi.org/10.1094/phyto-82-890.
Fedele, G., Brischetto, C., Rossi, V., and Gonzalez-Dominguez, E. 2022. A Systematic Map of the Research on Disease Modelling for Agricultural Crops Worldwide. Plants 11:724. https://doi.org/10.3390/plants11060724.
Franceschi, V. T., Alves, K. S., Mazaro, S. M., Godoy, C. V., Duarte, H. S. S., and Del Ponte, E. M. 2020. A new standard area diagram set for assessment of severity of soybean rust improves accuracy of estimates and optimizes resource use. Plant Pathology 69:495–505. https://doi.org/10.1111/ppa.13148.
Francl, L. J. 2001. The..disease triangle: A plant pathological paradigm revisited. The Plant Health Instructor. https://doi.org/10.1094/phi-t-2001-0517-01.
Gertheiss, J., Rügamer, D., Liew, B. X. W., and Greven, S. 2024. Functional Data Analysis: An Introduction and Recent Developments. Biometrical Journal 66. https://doi.org/10.1002/bimj.202300363.
Gigot, C. 2018. Epiphy: Analysis of plant disease epidemics.
Godoy, C. V., Seixas, C. D. S., Soares, R. M., Marcelino-Guimarães, F. C., Meyer, M. C., and Costamilan, L. M. 2016. Asian soybean rust in brazil: Past, present, and future. Pesquisa Agropecuária Brasileira 51:407–421. https://doi.org/10.1590/s0100-204x2016000500002.
González-Domínguez, E., Caffi, T., Rossi, V., Salotti, I., and Fedele, G. 2023. Plant Disease Models and Forecasting: Changes in Principles and Applications over the Last 50 Years. Phytopathology® 113:678–693. https://doi.org/10.1094/phyto-10-22-0362-kd.
González-Domínguez, E., Martins, R. B., Del Ponte, E. M., Michereff, S. J., García-Jiménez, J., and Armengol, J. 2014. Development and validation of a standard area diagram set to aid assessment of severity of loquat scab on fruit. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-014-0400-2.
Gouache, D., Léon, M. S., Duyme, F., and Braun, P. 2015. A novel solution to the variable selection problem in Window Pane approaches of plant pathogen Climate models: Development, evaluation and application of a climatological model for brown rust of wheat. Agricultural and Forest Meteorology 205:51–59. https://doi.org/10.1016/j.agrformet.2015.02.013.
Hank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A., Zarco-Tejada, P., and Mauser, W. 2018. Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surveys in Geophysics 40:515–551. https://doi.org/10.1007/s10712-018-9492-0.
Hau, B., and Kranz, J. 1990. Mathematics and statistics for analyses in epidemiology. In Springer Berlin Heidelberg, pp. 12–52. https://doi.org/10.1007/978-3-642-75398-5_2.
Hebert, T. T. 1982. The rationale for the horsfall-barratt plant disease assessment scale. Phytopathology 72:1269. https://doi.org/10.1094/phyto-72-1269.
Hjelkrem, A.-G. R., Aamot, H. U., Lillemo, M., Sørensen, E. S., Brodal, G., Russenes, A. L., Edwards, S. G., and Hofgaard, I. S. 2021. Weather Patterns Associated with DON Levels in Norwegian Spring Oat Grain: A Functional Data Approach. Plants 11:73. https://doi.org/10.3390/plants11010073.
Hughes, G., and Madden, L. V. 1992. Aggregation and incidence of disease. Plant Pathology 41:657–660. https://doi.org/10.1111/j.1365-3059.1992.tb02549.x.
Huichun YE, Senzheng CHEN, Anting GUO, Chaojia NIE, and Jingjing WANG. 2022. A dataset of UAV multispectral images for banana Fusarium wilt survey. https://doi.org/10.57760/SCIENCEDB.07000.
Islam, M. T., Kim, K.-H., and Choi, J. 2019. Wheat Blast in Bangladesh: The Current Situation and Future Impacts. The Plant Pathology Journal 35:1–10. https://doi.org/10.5423/ppj.rw.08.2018.0168.
Jeger, M. J., and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics 102:32–40. https://doi.org/10.1007/s001220051615.
Jesus Junior, W. C. de, and Bassanezi, R. B. 2004. Análise da dinâmica e estrutura de focos da morte súbita dos citros. Fitopatologia Brasileira 29:399–405. https://doi.org/10.1590/s0100-41582004000400007.
Ji, T., Languasco, L., Li, M., and Rossi, V. 2021. Effects of Temperature and Wetness Duration on Infection by Coniella diplodiella, the Fungus Causing White Rot of Grape Berries. Plants 10:1696. https://doi.org/10.3390/plants10081696.
Ji, T., Salotti, I., Altieri, V., Li, M., and Rossi, V. 2023. Temperature-Dependent Growth and Spore Germination of Fungi Causing Grapevine Trunk Diseases: Quantitative Analysis of Literature Data. Plant Disease 107:1386–1398. https://doi.org/10.1094/pdis-09-22-2249-re.
Jones, H. G., and Vaughan, R. A. 2010. Remote sensing of vegetation: Principles, techniques, and applications. Oxford, United Kingdom: Oxford University Press.
Kouadio, L., El Jarroudi, M., Belabess, Z., Laasli, S.-E., Roni, M. Z. K., Amine, I. D. I., Mokhtari, N., Mokrini, F., Junk, J., and Lahlali, R. 2023. A Review on UAV-Based Applications for Plant Disease Detection and Monitoring. Remote Sensing 15:4273. https://doi.org/10.3390/rs15174273.
Krause, R. A., and Massie, L. B. 1975. Predictive Systems: Modern Approaches to Disease Control. Annual Review of Phytopathology 13:31–47. https://doi.org/10.1146/annurev.py.13.090175.000335.
Krause, R. A., Massie, L. B., and Hyre, R. A. 1975. BLITECAST: A computerized forecast of potato late blight. The Plant Disease Reporter 59:95.
Kriss, A. B., Paul, P. A., and Madden, L. V. 2010. Relationship Between Yearly Fluctuations in Fusarium Head Blight Intensity and Environmental Variables: A Window-Pane Analysis. Phytopathology® 100:784–797. https://doi.org/10.1094/phyto-100-8-0784.
Lannou, C. 2012. Variation and Selection of Quantitative Traits in Plant Pathogens. Annual Review of Phytopathology 50:319–338. https://doi.org/10.1146/annurev-phyto-081211-173031.
Laranjeira, F. F., Bergamin Filho, A. R., and Amorim, L. I. 1998. Dinâmica e estrutura de focos da clorose variegada dos citros (CVC). Fitopatologia Brasileira 23:36–41.
Laranjeira, F. F., Bergamin Filho, A., Amorim, L., and Gottwald, T. R. 2004. Dinâmica espacial da clorose variegada dos citros em três regiões do estado de são paulo. Fitopatologia Brasileira 29:56–65. https://doi.org/10.1590/s0100-41582004000100009.
Lehner, M. S., Pethybridge, S. J., Meyer, M. C., and Del Ponte, E. M. 2016. Meta-analytic modelling of the incidenceyield and incidencesclerotial production relationships in soybean white mould epidemics. Plant Pathology 66:460–468. https://doi.org/10.1111/ppa.12590.
Leiminger, J. H., and Hausladen, H. 2012. Early Blight Control in Potato Using Disease-Orientated Threshold Values. Plant Disease 96:124–130. https://doi.org/10.1094/pdis-05-11-0431.
Li, B., Madden, L. V., and Xu, X. 2011. Spatial analysis by distance indices: an alternative local clustering index for studying spatial patterns. Methods in Ecology and Evolution 3:368–377. https://doi.org/10.1111/j.2041-210x.2011.00165.x.
Li, F., Upadhyaya, N. M., Sperschneider, J., Matny, O., Nguyen-Phuc, H., Mago, R., Raley, C., Miller, M. E., Silverstein, K. A. T., Henningsen, E., Hirsch, C. D., Visser, B., Pretorius, Z. A., Steffenson, B. J., Schwessinger, B., Dodds, P. N., and Figueroa, M. 2019. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nature Communications 10. https://doi.org/10.1038/s41467-019-12927-7.
Lin, L. I.-K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255. https://doi.org/10.2307/2532051.
Liu, H. I., Tsai, J. R., Chung, W. H., Bock, C. H., and Chiang, K. S. 2019. Effects of Quantitative Ordinal Scale Design on the Accuracy of Estimates of Mean Disease Severity. Agronomy 9:565. https://doi.org/10.3390/agronomy9090565.
Lowe, A., Harrison, N., and French, A. P. 2017. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13. https://doi.org/10.1186/s13007-017-0233-z.
MacHardy, W. E. 1989. A revision of mills’s criteria for predicting apple scab infection periods. Phytopathology 79:304. https://doi.org/10.1094/phyto-79-304.
Madden, L. 1978. FAST, a forecast system for alternaria solani on tomato. Phytopathology 68:1354. https://doi.org/10.1094/phyto-68-1354.
Madden, L. V. 1982. Evaluation of tests for randomness of infected plants. Phytopathology 72:195. https://doi.org/10.1094/phyto-72-195.
Madden, L. V., Esker, P. D., and Pethybridge, S. J. 2021. Forrest W. Nutter, Jr.: a career in phytopathometry. Tropical Plant Pathology 47:5–13. https://doi.org/10.1007/s40858-021-00469-7.
Madden, L. V., Hughes, G., and Bosch, F. van den, eds. 2007a. CHAPTER 12: Epidemics and crop yield. In The American Phytopathological Society, pp. 353–388. https://doi.org/10.1094/9780890545058.012.
Madden, L. V., Hughes, G., Moraes, W. B., Xu, X.-M., and Turechek, W. W. 2018. Twenty-Five Years of the Binary Power Law for Characterizing Heterogeneity of Disease Incidence. Phytopathology® 108:656–680. https://doi.org/10.1094/phyto-07-17-0234-rvw.
Madden, L. V., Hughes, G., and van den Bosch, F. 2007b. Spatial aspects of epidemicsIII: Patterns of plant disease. In The American Phytopathological Society, pp. 235–278. https://doi.org/10.1094/9780890545058.009.
Madden, L. V., Hughes, G., and van den Bosch, F. 2007c. Temporal analysis i: Quantifying and comparing epidemics. In The American Phytopathological Society, pp. 63–116. https://doi.org/10.1094/9780890545058.004.
Madden, L. V., Hughes, G., and van den Bosch, F. 2007d. The study of plant disease epidemics. The American Phytopathological Society. https://doi.org/10.1094/9780890545058.
Madden, L. V., and Paul, P. A. 2009. Assessing Heterogeneity in the Relationship Between Wheat Yield and Fusarium Head Blight Intensity Using Random-Coefficient Mixed Models. Phytopathology® 99:850–860. https://doi.org/10.1094/phyto-99-7-0850.
Madden, L. V., and Paul, P. A. 2011. Meta-Analysis for Evidence Synthesis in Plant Pathology: An Overview. Phytopathology® 101:16–30. https://doi.org/10.1094/phyto-03-10-0069.
Magarey, R. D., and Sutton, T. B. 2007. How to Create and Deploy Infection Models for Plant Pathogens. In Springer Netherlands, pp. 3–25. https://doi.org/10.1007/978-1-4020-6061-8_1.
Magarey, R. D., Sutton, T. B., and Thayer, C. L. 2005. A Simple Generic Infection Model for Foliar Fungal Plant Pathogens. Phytopathology® 95:92–100. https://doi.org/10.1094/phyto-95-0092.
Magarey, R. D., Travis, J. W., Russo, J. M., Seem, R. C., and Magarey, P. A. 2002. Decision Support Systems: Quenching the Thirst. Plant Disease 86:4–14. https://doi.org/10.1094/pdis.2002.86.1.4.
Malaker, P. K., Barma, N. C. D., Tiwari, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H.-J., Peterson, G. L., Pedley, K. F., Farman, M. L., and Valent, B. 2016. First Report of Wheat Blast Caused by Magnaporthe oryzae Pathotype triticum in Bangladesh. Plant Disease 100:2330–2330. https://doi.org/10.1094/pdis-05-16-0666-pdn.
Mehra, L. K., Cowger, C., Gross, K., and Ojiambo, P. S. 2016. Predicting pre-planting risk of stagonospora nodorum blotch in winter wheat using machine learning models. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00390.
Mehra, L. K., Cowger, C., and Ojiambo, P. S. 2017. A Model for Predicting Onset of Stagonospora nodorum Blotch in Winter Wheat Based on Preplanting and Weather Factors. Phytopathology® 107:635–644. https://doi.org/10.1094/phyto-03-16-0133-r.
Mikaberidze, A., Mundt, C. C., and Bonhoeffer, S. 2015. Data from: Invasiveness of plant pathogens depends on the spatial scale of host distribution. https://doi.org/10.5061/DRYAD.F2J8S.
Mills, W. D. 1944. Efficient use of sulfur dusts and sprays during rain to control apple scab. Cornell Extension Bulletin 630.
Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37:17. https://doi.org/10.2307/2332142.
Moreira, R. R., Silva Silveira Duarte, H. da, and De Mio, L. L. M. 2018. Improving accuracy, precision and reliability of severity estimates of Glomerella leaf spot on apple leaves using a new standard area diagram set. European Journal of Plant Pathology 153:975–982. https://doi.org/10.1007/s10658-018-01610-0.
Mumford, J. D., and Norton, G. A. 1984. Economics of Decision Making in Pest Management. Annual Review of Entomology 29:157–174. https://doi.org/10.1146/annurev.en.29.010184.001105.
Mundt, C. C., Ahmed, H. U., Finckh, M. R., Nieva, L. P., and Alfonso, R. F. 1999. Primary Disease Gradients of Bacterial Blight of Rice. Phytopathology® 89:64–67. https://doi.org/10.1094/phyto.1999.89.1.64.
Nelson, S. C. 1996. A simple analysis of disease foci. Phytopathology 86:432–439.
Nutter, F. W., and Esker, P. D. 2006. The Role of Psychophysics in Phytopathology: The WeberFechner Law Revisited. European Journal of Plant Pathology 114:199–213. https://doi.org/10.1007/s10658-005-4732-9.
Nutter, F. W., Esker, P. D., and Netto, R. A. C. 2006. Disease Assessment Concepts and the Advancements Made in Improving the Accuracy and Precision of Plant Disease Data. European Journal of Plant Pathology 115:95–103. https://doi.org/10.1007/s10658-005-1230-z.
Nutter, F., Teng, P., and Royer, M. 1993. Terms and concepts for yield, crop loss, and disease thresholds. Plant Disease 77:193–211.
Oerke, E.-C. 2020. Remote Sensing of Diseases. Annual Review of Phytopathology 58:225–252. https://doi.org/10.1146/annurev-phyto-010820-012832.
Olivoto, T. 2022. Lights, camera, pliman! An R package for plant image analysis. Methods in Ecology and Evolution 13:789–798. https://doi.org/10.1111/2041-210x.13803.
Olivoto, T., Andrade, S. M. P., and M. Del Ponte, E. 2022. Measuring plant disease severity in R: introducing and evaluating the pliman package. Tropical Plant Pathology 47:95–104. https://doi.org/10.1007/s40858-021-00487-5.
Onofri, A., Piepho, H.-P., and Kozak, M. 2018. Analysing censored data in agricultural research: A review with examples and software tips. Annals of Applied Biology 174:3–13. https://doi.org/10.1111/aab.12477.
Parker, S. K., Nutter, F. W., and Gleason, M. L. 1997. Directional Spread of Septoria Leaf Spot in Tomato Rows. Plant Disease 81:272–276. https://doi.org/10.1094/pdis.1997.81.3.272.
Paul, P. A., and Munkvold, G. P. 2004. A Model-Based Approach to Preplanting Risk Assessment for Gray Leaf Spot of Maize. Phytopathology® 94:1350–1357. https://doi.org/10.1094/phyto.2004.94.12.1350.
Pedigo, L. P., Hutchins, S. H., and Higley, L. G. 1986. Economic Injury Levels in Theory and Practice. Annual Review of Entomology 31:341–368. https://doi.org/10.1146/annurev.en.31.010186.002013.
Pegg, K. G., Coates, L. M., O’Neill, W. T., and Turner, D. W. 2019. The epidemiology of fusarium wilt of banana. Frontiers in Plant Science 10. https://doi.org/10.3389/fpls.2019.01395.
Pereira, W. E. L., Andrade, S. M. P. de, Del Ponte, E. M., Esteves, M. B., Canale, M. C., Takita, M. A., Coletta-Filho, H. D., and De Souza, A. A. 2020. Severity assessment in the Nicotiana tabacum-Xylella fastidiosa subsp. pauca pathosystem: design and interlaboratory validation of a standard area diagram set. Tropical Plant Pathology 45:710–722. https://doi.org/10.1007/s40858-020-00401-5.
Pfender, W. F. 2003. Prediction of Stem Rust Infection Favorability, by Means of Degree-Hour Wetness Duration, for Perennial Ryegrass Seed Crops. Phytopathology® 93:467–477. https://doi.org/10.1094/phyto.2003.93.4.467.
Pietravalle, S., Shaw, M. W., Parker, S. R., and Bosch, F. van den. 2003. Modeling of Relationships Between Weather and Septoria tritici Epidemics on Winter Wheat: A Critical Approach. Phytopathology® 93:1329–1339. https://doi.org/10.1094/phyto.2003.93.10.1329.
Reis, E. M., Hoffmann, L. L., and Blum, M. 2002. Modelo de ponto crítico para estimar os danos causados pelo oídio em cevada. Fitopatologia Brasileira 27:644–646.
Rossi, V., Caffi, T., Giosuè, S., and Bugiani, R. 2008. A mechanistic model simulating primary infections of downy mildew in grapevine. Ecological Modelling 212:480–491. https://doi.org/10.1016/j.ecolmodel.2007.10.046.
Rossi, V., Giosuè, S., and Caffi, T. 2010. Modelling Plant Diseases for Decision Making in Crop Protection. In Springer Netherlands, pp. 241–258. https://doi.org/10.1007/978-90-481-9277-9_15.
Rossi, V., Onesti, G., Legler, S. E., and Caffi, T. 2014. Use of systems analysis to develop plant disease models based on literature data: grape black-rot as a case-study. European Journal of Plant Pathology 141:427–444. https://doi.org/10.1007/s10658-014-0553-z.
Rotem, J. 1988. Techniques of Controlled-Condition Experiments. In Springer Berlin Heidelberg, pp. 19–31. https://doi.org/10.1007/978-3-642-95534-1_3.
Sackett, K. E., and Mundt, C. C. 2005. Primary Disease Gradients of Wheat Stripe Rust in Large Field Plots. Phytopathology® 95:983–991. https://doi.org/10.1094/phyto-95-0983.
Saif, M. S., Chancia, R., Pethybridge, S., Murphy, S. P., Hassanzadeh, A., and Aardt, J. van. 2023. Forecasting Table Beet Root Yield Using Spectral and Textural Features from Hyperspectral UAS Imagery. Remote Sensing 15:794. https://doi.org/10.3390/rs15030794.
Saif, M. S., Chancia, R., Sharma, P., Murphy, S., Raqueno, N., Bauch, T., Pethybridge, S., and Aardt, J. van. 2024. Data for: Estimation of cercospora leaf spot disease severity in table beets from UAS multispectral images. https://doi.org/10.17632/V9B7RWRWX9.1.
Salotti, I., Bove, F., and Rossi, V. 2022. Development and validation of a mechanistic, weather-based model for predicting puccinia graminis f. Sp. Tritici infections and stem rust progress in wheat. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.897680.
Salotti, I., and Rossi, V. 2023. A Mechanistic Model Accounting for the Effect of Soil Moisture, Weather, and Host Growth Stage on the Development of Sclerotinia sclerotiorum. Plant Disease 107:514–533. https://doi.org/10.1094/pdis-12-21-2743-re.
Savary, S., Nelson, A. D., Djurle, A., Esker, P. D., Sparks, A., Amorim, L., Bergamin Filho, A., Caffi, T., Castilla, N., Garrett, K., McRoberts, N., Rossi, V., Yuen, J., and Willocquet, L. 2018. Concepts, approaches, and avenues for modelling crop health and crop losses. European Journal of Agronomy 100:4–18. https://doi.org/10.1016/j.eja.2018.04.003.
Savary, S., Teng, P. S., Willocquet, L., and Nutter, F. W. 2006. Quantification and Modeling of Crop Losses: A Review of Purposes. Annual Review of Phytopathology 44:89–112. https://doi.org/10.1146/annurev.phyto.44.070505.143342.
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution 3:430–439. https://doi.org/10.1038/s41559-018-0793-y.
Scott, P. R., and Hollins, T. W. 1974. Effects of eyespot on the yield of winter wheat. Annals of Applied Biology 78:269–279. https://doi.org/10.1111/j.1744-7348.1974.tb01506.x.
Seem, R. C. 1984. Simple decision aids for practical control of pests. Plant Disease 68:656. https://doi.org/10.1094/pd-69-656.
Shah, D. A., De Wolf, E. D., Paul, P. A., and Madden, L. V. 2019a. Functional Data Analysis of Weather Variables Linked to Fusarium Head Blight Epidemics in the United States. Phytopathology® 109:96–110. https://doi.org/10.1094/phyto-11-17-0386-r.
Shah, D. A., and Madden, L. V. 2004. Nonparametric Analysis of Ordinal Data in Designed Factorial Experiments. Phytopathology® 94:33–43. https://doi.org/10.1094/phyto.2004.94.1.33.
Shah, D. A., Molineros, J. E., Paul, P. A., Willyerd, K. T., Madden, L. V., and De Wolf, E. D. 2013. Predicting Fusarium Head Blight Epidemics With Weather-Driven Pre- and Post-Anthesis Logistic Regression Models. Phytopathology® 103:906–919. https://doi.org/10.1094/phyto-11-12-0304-r.
Shah, D. A., Paul, P. A., De Wolf, E. D., and Madden, L. V. 2019b. Predicting plant disease epidemics from functionally represented weather series. Philosophical Transactions of the Royal Society B: Biological Sciences 374:20180273. https://doi.org/10.1098/rstb.2018.0273.
Shrout, P. E., and Fleiss, J. L. 1979. Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin 86:420–428. https://doi.org/10.1037/0033-2909.86.2.420.
Simko, I., and Piepho, H.-P. 2012. The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology® 102:381–389. https://doi.org/10.1094/phyto-07-11-0216.
Skaracis, G. N., Pavli, O. I., and Biancardi, E. 2010. Cercospora Leaf Spot Disease of Sugar Beet. Sugar Tech 12:220–228. https://doi.org/10.1007/s12355-010-0055-z.
Tan, W., Li, K., Liu, D., and Xing, W. 2023. Cercospora leaf spot disease of sugar beet. Plant Signaling & Behavior 18. https://doi.org/10.1080/15592324.2023.2214765.
Te Beest, D. E., Paveley, N. D., Shaw, M. W., and Bosch, F. van den. 2008. DiseaseWeather Relationships for Powdery Mildew and Yellow Rust on Winter Wheat. Phytopathology® 98:609–617. https://doi.org/10.1094/phyto-98-5-0609.
Tembo, B., Mulenga, R. M., Sichilima, S., M’siska, K. K., Mwale, M., Chikoti, P. C., Singh, P. K., He, X., Pedley, K. F., Peterson, G. L., Singh, R. P., and Braun, H. J. 2020. Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia ed. Zonghua Wang. PLOS ONE 15:e0238724. https://doi.org/10.1371/journal.pone.0238724.
Thresh, J. M. 1998. In memory of James Edward Vanderplank 19091997. Plant Pathology 47:114–115. https://doi.org/10.1046/j.1365-3059.2998.00220.x.
Vanderplank, J. 1963. Plant disease epidemics and control. Elsevier. https://doi.org/10.1016/c2013-0-11642-x.
Viechtbauer, W. 2010. Conducting Meta-Analyses inRwith themetaforPackage. Journal of Statistical Software 36. https://doi.org/10.18637/jss.v036.i03.
Wallin, J. R. 1962. Summary of recent progress in predicting late blight epidemics in United States and Canada. American Potato Journal 39:306–312. https://doi.org/10.1007/bf02862155.
Wiegand, T., and A. Moloney, K. 2004. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x.
Willbur, J. F., Fall, M. L., Bloomingdale, C., Byrne, A. M., Chapman, S. A., Isard, S. A., Magarey, R. D., McCaghey, M. M., Mueller, B. D., Russo, J. M., Schlegel, J., Chilvers, M. I., Mueller, D. S., Kabbage, M., and Smith, D. L. 2018. Weather-Based Models for Assessing the Risk of Sclerotinia sclerotiorum Apothecial Presence in Soybean (Glycine max) Fields. Plant Disease 102:73–84. https://doi.org/10.1094/pdis-04-17-0504-re.
Windels, C. E., Lamey, H. A., Hilde, D., Widner, J., and Knudsen, T. 1998. A Cerospora Leaf Spot Model for Sugar Beet: In Practice by an Industry. Plant Disease 82:716–726. https://doi.org/10.1094/pdis.1998.82.7.716.
Xu, X.-M., and Madden, L. V. 2004. Use of SADIE statistics to study spatial dynamics of plant disease epidemics. Plant Pathology 53:38–49. https://doi.org/10.1111/j.1365-3059.2004.00949.x.
Xu, X.-M., and Robinson, J. D. 2000. Effects of temperature on the incubation and latent periods of hawthorn powdery mildew (Podosphaera clandestina). Plant Pathology 49:791–797. https://doi.org/10.1046/j.1365-3059.2000.00520.x.
Yadav, N. V. S., Vos, S. M. de, Bock, C. H., and Wood, B. W. 2012. Development and validation of standard area diagrams to aid assessment of pecan scab symptoms on fruit. Plant Pathology 62:325–335. https://doi.org/10.1111/j.1365-3059.2012.02641.x.
Ye, H., Huang, W., Huang, S., Cui, B., Dong, Y., Guo, A., Ren, Y., and Jin, Y. 2020. Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing. Remote Sensing 12:938. https://doi.org/10.3390/rs12060938.
Yorinori, J. T., Paiva, W. M., Frederick, R. D., Costamilan, L. M., Bertagnolli, P. F., Hartman, G. E., Godoy, C. V., and Nunes, J. 2005. Epidemics of Soybean Rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Disease 89:675–677. https://doi.org/10.1094/pd-89-0675.
Zadoks, J. C., and Schein, R. D. 1988. James Edward Vanderplank: Maverick* and Innovator. Annual Review of Phytopathology 26:31–37. https://doi.org/10.1146/annurev.py.26.090188.000335.